Authors: Radoslaw Slezak, Liliana Krzystek, Michał Puchalski, Izabella Krucińska, Adam Sitarski
Abstract: The degradation of bio-based plastic materials in field soil under natural conditions was investigated in this study. Three bio-based plastics materials, which contained polylactide (PLA) with polybutylene adipate terephthalate and additives (PLA_1), PLA-based polyester blend with mineral filler (PLA_2), and polybutylene succinate with mineral filler (PBS_1) in the form of the film, were subjected to soil burial biodegradation processes. The experiments were carried out in a climate with an average annual temperature of 9.4 °C, in winter and summer periods for one year. The degradation of the materials was evaluated by macro- and microscopic observations, weight loss, thermogravimetric analysis, and tensile test. Macroscopic observation indicated that changes in the color of film surface were visible for samples PBS_1 after 12 months of degradation. Using microscopic inspection the erosion of surface samples PLA_1 and PBS_1 after 12 months was observed. Mass loss of samples PLA_1 and PLA_2 after one year of degradation were below 0.6 %. Moreover, for PBS_1 sample, mass loss was equal to 4.3 %. Based on the obtained results of the mass loss, a description of the degradation kinetics was proposed, showing the changes in the thickness of the tested polymer over time. The thermal stability of the samples PLA_1 and PLA_2 decreased during the degradation process by 16.1 and 2.6 °C, respectively, and for PBS_1 increased by 1.7 °C. Tensile strength at break after 12 months of degradation decreased for sample PLA_1 and PLA_2 by 27.3 and 5.8 %, respectively, and increased for sample PBS_1 by 28.2 % compare to unexposed sample.
Published in: Science of The Total Environment Volume 866, 25 March 2023, 161401
https://doi.org/10.1016/j.scitotenv.2023.161401
Please find the full article here.